Introduction – Why C-band is so common?

The C-band, ranging from 1530 nm to 1565 nm, stands for the conventional band (see Figure 1). It is the primary wavelength band used for optical communication especially in a long-distance (i.e. inter-continental and trans-oceanic) transmission system, because the attenuation of optical fiber has its minimum in the C-band. The current lowest loss of optical fiber is 0.1419 dB/km at 1560 nm, which was reported in 2017 .

Figure 1: O/E/S/C/L-bands

 

Another important factor, that has made the C-band the primary wavelength band for optical communication, is the invention of erbium-doped fiber amplifier (EDFA). An EDFA enables high-gain optical amplification with low noise, and has enabled long-distance optical transmission without using an O-E (optical-to-electronic) and E-O converter.

 

Figure 2: EDFAs used in optical transmission system

 

Fiber chromatic dispersion in C-band

The conventional single-mode fiber possesses a chromatic dispersion coefficient of around 15-17 ps/nm/km in the C-band (see Figure 3), and chromatic dispersion compensation is necessary for high-speed and long-distance transmission systems. Optical dispersion compensation devices, such as dispersion compensation fibers and fiber Bragg gratings, have long been used in an intensity-modulated, direct-detection (IM-DD) transmission systems.

Figure 3: Chromatic dispersion (CD) characteristics of conventional single-mode fiber (G.652.D ),
showing five optical transmission bands and max/min CD coefficients.

 

Digital-coherent detection

Digital-coherent detection has now become common in many state-of-the-art, long-haul and submarine optical transmission systems. In a digital-coherent detection system, the signal is sent by changing the phase of light, and is detected by measuring the phase. The phase modulation/detection allows electronic dispersion compensation using a digital signal processor (DSP), and optical dispersion compensation devices can be eliminated from the system.

 

FiberLabs’ C-band product lineup

FiberLabs offer a wide range of optical instruments operating in the C-band, such as EDFA, ASE, and SLD sources. Please check the following link for details, and feel free to contact us for your specific needs.

EDFA ASE source SLD source
FiberLabs’
C-band lineup
C-band
Bench top type
High-power type
19-inch 1U-type
Module type

C-band
Bench-top type
Module type
C-band
Bench-top type
Module type
C-band (MSA size)
Module type (half MSA)
Module type (full MSA)
C+L-band
Bench-top type
Module type
C+L-band
Benth-top type
C+L-band
Bench-top type
S+C+L-band
Bench-top type
 O/E/S/C/L-band
Benth-top type

 

Reference

1.
“G.652 : Characteristics of a single-mode optical fibre and cable,” <https://www.itu.int/rec/T-REC-G.652/en>.
1.
Y. Tamura et al., “Lowest-Ever 0.1419-dB/km Loss Optical Fiber,” in Optical Fiber Communication Conference Postdeadline Papers (2017), paper Th5D.1, p. Th5D.1, Optical Society of America (2017) [http://doi.org/10.1364/OFC.2017.Th5D.1].