FiberLabs’ fluoride fibers
FiberLabs’ fluoride fibers have been used for many projects. Below is the list of publications in which our fibers are mentioned. FiberLabs appreciates the authors of these papers for mentioning us in their publication.
148200 {148200:SGMTAQ79},{148200:SA2B57GA},{148200:U857VXID},{148200:RM75H5KY},{148200:7SD729QW},{148200:PTENM8N9},{148200:3F7UDS92},{148200:4WV49KPI},{148200:5DIFNMP7},{148200:NHQG6ASU},{148200:I8QIFTBW},{148200:Y8I4UQRP},{148200:ZUPPU423},{148200:FXR3QSXI},{148200:KM62KJHW},{148200:ARLC7F7Y},{148200:39WTVK7W},{148200:MRTUDEYT},{148200:HCX9VRP4},{148200:YU2ASNSR},{148200:ENV8GUSU},{148200:6A78TBZT},{148200:UIII5SUW},{148200:GDTB2NCX},{148200:KPRBTNU7},{148200:MWZ9JNAM},{148200:QL2ZDRKE},{148200:VV5EQLXM},{148200:3ABVY7XB},{148200:KJQHCD2B},{148200:6565VMWD},{148200:SPYAYYZ7},{148200:YS83RLR8},{148200:YZNYCTD4},{148200:86UU7XJU},{148200:T8XU8ZZP},{148200:3DX5Q4L5},{148200:C7XXDDU2} items 1 journal-of-biomedical-optics date asc https://www.fiberlabs.com/wp2/wp-content/plugins/zotpress/1.
T. Nakai et al., “Development of optical devices based on rare-earth-doped fluoride fibers,” in Rare-Earth-Doped Materials and Devices VI
4645, pp. 51–59, International Society for Optics and Photonics (2002) [
http://doi.org/10.1117/12.461644].
1.
S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett.
34(15), 2327–2329 (2009) [
http://doi.org/10.1364/OL.34.002327].
1.
M. Gorjan, M. Marinček, and M. Čopič, “Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers,” Opt. Express, OE
17(22), 19814–19822 (2009) [
http://doi.org/10.1364/OE.17.019814].
1.
A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 μm and blue upconversion fluorescence upon excitation at 2 μm,” Opt. Express
18(19), 20164–20169 (2010) [
http://doi.org/10.1364/OE.18.020164].
1.
J. Li et al., “Efficient 2.87 um fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett., OL
37(18), 3747–3749 (2012) [
http://doi.org/10.1364/OL.37.003747].
1.
Y. Nomura and T. Fuji, “Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator,” Opt. Express, OE
22(10), 12461–12466 (2014) [
http://doi.org/10.1364/OE.22.012461].
1.
K. Liu et al., “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express, OE
22(20), 24384–24391 (2014) [
http://doi.org/10.1364/OE.22.024384].
1.
Y. Nomura et al., “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE Journal of Selected Topics in Quantum Electronics
21(1), 24–30 (2015) [
http://doi.org/10.1109/JSTQE.2014.2325533].
1.
J. Li et al., “Tunable Fe
2+:ZnSe passively Q-switched Ho
3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express, OE
23(17), 22362–22370 (2015) [
http://doi.org/10.1364/OE.23.022362].
1.
Z. Qin et al., “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express, OE
23(19), 24713–24718 (2015) [
http://doi.org/10.1364/OE.23.024713].
1.
O. Henderson-Sapir et al., “Recent Advances in 3.5 μm Erbium-Doped Mid-Infrared Fiber Lasers,” IEEE Journal of Selected Topics in Quantum Electronics
23(3), 1–9 (2017) [
http://doi.org/10.1109/JSTQE.2016.2615961].
1.
C. Zhu et al., “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nature Communications
8, 14111 (2017) [
http://doi.org/10.1038/ncomms14111].
1.
C. Wei et al., “Widely wavelength tunable gain-switched Er
3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express, OE
25(8), 8816–8827 (2017) [
http://doi.org/10.1364/OE.25.008816].
1.
H. Ahmad et al., “Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (1450.0 to 1512.0 nm) region using a single-walled carbon-nanotube-based saturable absorber,” Appl. Opt., AO
56(13), 3841–3847 (2017) [
http://doi.org/10.1364/AO.56.003841].
1.
Y. Nomura and T. Fuji, “Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier,” Opt. Express, OE
25(12), 13691–13696 (2017) [
http://doi.org/10.1364/OE.25.013691].
1.
S. Ning et al., “Fabrication of Fe
2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express, OME
8(4), 865–874 (2018) [
http://doi.org/10.1364/OME.8.000865].
1.
Z. Qin et al., “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express, OE
26(7), 8224–8231 (2018) [
http://doi.org/10.1364/OE.26.008224].
1.
C. A. Schäfer et al., “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm,” Opt. Lett., OL
43(10), 2340–2343 (2018) [
http://doi.org/10.1364/OL.43.002340].
1.
S. A. Rezvani et al., “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express, OE
26(22), 29460–29470 (2018) [
http://doi.org/10.1364/OE.26.029460].
1.
K. Goya et al., “Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution,” Opt. Express, OE
26(25), 33305–33313 (2018) [
http://doi.org/10.1364/OE.26.033305].
1.
A. V. Pushkin et al., “Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser,” Opt. Lett., OL
43(24), 5941–5944 (2018) [
http://doi.org/10.1364/OL.43.005941].
1.
S. A. Rezvani, Y. Nomura, and T. Fuji, “Generation and Characterization of Mid-Infrared Supercontinuum in Bulk YAG Pumped by Femtosecond 1937 nm Pulses from a Regenerative Amplifier,” Applied Sciences
9(16), 3399 (2019) [
http://doi.org/10.3390/app9163399].
1.
N. Nagl et al., “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett., OL
44(10), 2390–2393 (2019) [
http://doi.org/10.1364/OL.44.002390].
1.
M. Tokurakawa, H. Sagara, and H. Tünnermann, “All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser,” Opt. Express, OE
27(14), 19530–19535 (2019) [
http://doi.org/10.1364/OE.27.019530].
1.
S. A. Rezvani et al., “Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers,” Opt. Express, OE
27(17), 24499–24511 (2019) [
http://doi.org/10.1364/OE.27.024499].
Let us list your publication here!
We are very honored to list your publications here if you use our fiber, so if not listed, please let us know via request sheet!