FiberLabs in Publication

  • HOME »
  • FiberLabs in Publication

FiberLabs’ fluoride fibers

FiberLabs’ fluoride fibers have been used for many projects. Below are the list of publications in which our fibers are mentioned.

1.
T. Nakai et al., “Development of optical devices based on rare-earth-doped fluoride fibers,” in Rare-Earth-Doped Materials and Devices VI 4645, pp. 51–59, International Society for Optics and Photonics (2002) [http://doi.org/10.1117/12.461644].
1.
S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett. 34(15), 2327–2329 (2009) [http://doi.org/10.1364/OL.34.002327].
1.
S. D. Jackson, “High-power erbium cascade fibre laser,” Electronics Letters 45(16), 830–832 (2009) [http://doi.org/10.1049/el.2009.1526].
1.
S. Tokita et al., “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett., OL 34(20), 3062–3064 (2009) [http://doi.org/10.1364/OL.34.003062].
1.
M. Gorjan, M. Marinček, and M. Čopič, “Pump absorption and temperature distribution in erbium-doped double-clad fluoride-glass fibers,” Opt. Express, OE 17(22), 19814–19822 (2009) [http://doi.org/10.1364/OE.17.019814].
1.
A. Guhur and S. D. Jackson, “Efficient holmium-doped fluoride fiber laser emitting 2.1 μm and blue upconversion fluorescence upon excitation at 2 μm,” Opt. Express 18(19), 20164–20169 (2010) [http://doi.org/10.1364/OE.18.020164].
1.
S. Tokita et al., “Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88μm,” Opt. Lett., OL 35(23), 3943–3945 (2010) [http://doi.org/10.1364/OL.35.003943].
1.
S. D. Jackson, M. Pollnau, and J. Li, “Diode Pumped Erbium Cascade Fiber Lasers,” IEEE Journal of Quantum Electronics 47(4), 471–478 (2011) [http://doi.org/10.1109/JQE.2010.2091256].
1.
J. Li et al., “Efficient 2.87 um fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett., OL 37(18), 3747–3749 (2012) [http://doi.org/10.1364/OL.37.003747].
1.
K. Kohno et al., “1 W single-frequency Tm-doped ZBLAN fiber MOPA around 810 nm,” Opt. Lett., OL 39(7), 2191–2193 (2014) [http://doi.org/10.1364/OL.39.002191].
1.
Y. Nomura and T. Fuji, “Sub-50-fs pulse generation from thulium-doped ZBLAN fiber laser oscillator,” Opt. Express, OE 22(10), 12461–12466 (2014) [http://doi.org/10.1364/OE.22.012461].
1.
K. Liu et al., “High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power,” Opt. Express, OE 22(20), 24384–24391 (2014) [http://doi.org/10.1364/OE.22.024384].
1.
Y. Nomura et al., “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE Journal of Selected Topics in Quantum Electronics 21(1), 24–30 (2015) [http://doi.org/10.1109/JSTQE.2014.2325533].
1.
V. Fortin et al., “30 W fluoride glass all-fiber laser at 2.94 μm,” Opt. Lett., OL 40(12), 2882–2885 (2015) [http://doi.org/10.1364/OL.40.002882].
1.
S. Duval et al., “Femtosecond fiber lasers reach the mid-infrared,” Optica, OPTICA 2(7), 623–626 (2015) [http://doi.org/10.1364/OPTICA.2.000623].
1.
J. Li et al., “Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm,” Opt. Express, OE 23(17), 22362–22370 (2015) [http://doi.org/10.1364/OE.23.022362].
1.
Z. Qin et al., “Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Express, OE 23(19), 24713–24718 (2015) [http://doi.org/10.1364/OE.23.024713].
1.
Y. Nomura and T. Fuji, “Efficient chirped-pulse amplification based on thulium-doped ZBLAN fibers,” Appl. Phys. Express 10(1), 012703 (2016) [http://doi.org/10.7567/APEX.10.012703].
1.
S. Antipov et al., “High-power mid-infrared femtosecond fiber laser in the water vapor transmission window,” Optica, OPTICA 3(12), 1373–1376 (2016) [http://doi.org/10.1364/OPTICA.3.001373].
1.
O. Henderson-Sapir et al., “Recent Advances in 3.5 μm Erbium-Doped Mid-Infrared Fiber Lasers,” IEEE Journal of Selected Topics in Quantum Electronics 23(3), 1–9 (2017) [http://doi.org/10.1109/JSTQE.2016.2615961].
1.
C. Zhu et al., “A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions,” Nature Communications 8, 14111 (2017) [http://doi.org/10.1038/ncomms14111].
1.
C. Wei et al., “Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm,” Opt. Express, OE 25(8), 8816–8827 (2017) [http://doi.org/10.1364/OE.25.008816].
1.
H. Ahmad et al., “Tunable passively Q-switched thulium-fluoride fiber laser in the S+/S band (1450.0 to 1512.0 nm) region using a single-walled carbon-nanotube-based saturable absorber,” Appl. Opt., AO 56(13), 3841–3847 (2017) [http://doi.org/10.1364/AO.56.003841].
1.
Y. Nomura and T. Fuji, “Generation of watt-class, sub-50 fs pulses through nonlinear spectral broadening within a thulium-doped fiber amplifier,” Opt. Express, OE 25(12), 13691–13696 (2017) [http://doi.org/10.1364/OE.25.013691].
1.
C. Wei et al., “34 nm-wavelength-tunable picosecond Ho3+/Pr3+-codoped ZBLAN fiber laser,” Opt. Express, OE 25(16), 19170–19178 (2017) [http://doi.org/10.1364/OE.25.019170].
1.
S. Ning et al., “Fabrication of Fe2+:ZnSe nanocrystals and application for a passively Q-switched fiber laser,” Opt. Mater. Express, OME 8(4), 865–874 (2018) [http://doi.org/10.1364/OME.8.000865].
1.
Z. Qin et al., “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express, OE 26(7), 8224–8231 (2018) [http://doi.org/10.1364/OE.26.008224].
1.
J. Liu et al., “Widely Wavelength-Tunable Mid-Infrared Fluoride Fiber Lasers,” IEEE Journal of Selected Topics in Quantum Electronics 24(3), 1–7 (2018) [http://doi.org/10.1109/JSTQE.2017.2720964].
1.
C. A. Schäfer et al., “Fluoride-fiber-based side-pump coupler for high-power fiber lasers at 2.8 μm,” Opt. Lett., OL 43(10), 2340–2343 (2018) [http://doi.org/10.1364/OL.43.002340].
1.
S. A. Rezvani et al., “Millijoule femtosecond pulses at 1937 nm from a diode-pumped ring cavity Tm:YAP regenerative amplifier,” Opt. Express, OE 26(22), 29460–29470 (2018) [http://doi.org/10.1364/OE.26.029460].
1.
K. Goya et al., “Plane-by-plane femtosecond laser inscription of first-order fiber Bragg gratings in fluoride glass fiber for in situ monitoring of lasing evolution,” Opt. Express, OE 26(25), 33305–33313 (2018) [http://doi.org/10.1364/OE.26.033305].
1.
A. V. Pushkin et al., “Compact, highly efficient, 2.1-W continuous-wave mid-infrared Fe:ZnSe coherent source, pumped by an Er:ZBLAN fiber laser,” Opt. Lett., OL 43(24), 5941–5944 (2018) [http://doi.org/10.1364/OL.43.005941].
1.
S. A. Rezvani, Y. Nomura, and T. Fuji, “Generation and Characterization of Mid-Infrared Supercontinuum in Bulk YAG Pumped by Femtosecond 1937 nm Pulses from a Regenerative Amplifier,” Applied Sciences 9(16), 3399 (2019) [http://doi.org/10.3390/app9163399].
1.
N. Nagl et al., “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett., OL 44(10), 2390–2393 (2019) [http://doi.org/10.1364/OL.44.002390].
1.
M. Tokurakawa, H. Sagara, and H. Tünnermann, “All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser,” Opt. Express, OE 27(14), 19530–19535 (2019) [http://doi.org/10.1364/OE.27.019530].
1.
S. A. Rezvani et al., “Generation and characterization of mid-infrared supercontinuum in polarization maintained ZBLAN fibers,” Opt. Express, OE 27(17), 24499–24511 (2019) [http://doi.org/10.1364/OE.27.024499].
1.
K. Goya et al., “Stable 35-W Er: ZBLAN fiber laser with CaF2 end caps,” Appl. Phys. Express 12(10), 102007 (2019) [http://doi.org/10.7567/1882-0786/ab3f44].
1.
H. Uehara et al., “Power scalable 30-W mid-infrared fluoride fiber amplifier,” Opt. Lett., OL 44(19), 4777–4780 (2019) [http://doi.org/10.1364/OL.44.004777].

Let us list your publication here!

We are very honored to list your publications here if you use our fiber, so if not listed, please let us know via request sheet!

Copyright © Fiberlabs Inc All Rights Reserved.
Powered by WordPress & BizVektor Theme by Vektor,Inc. technology.